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Abstract

The adaptive-passive approach to vibration control shows potential for achieving superior performance
when compared to classical passive solutions. On-line adaptation of passive elements is central to the
adaptive-passive approach and a great deal of research has focused on determining methods to realize the
physical adaptation of the vibration control system. However, very little effort has been put into designing
feedback laws to close the loop and control on-line adaptation to achieve desired performance. This paper
discusses the design and analysis of a controller to tune an adaptive-passive vibration control system, in this
case a shape memory alloy (SMA) adaptive-tuned vibration absorber (ATVA). Tuning of the SMA ATVA
is achieved through appropriate heating and cooling of SMA beam elements. The SMA ATVA controller is
designed using a model developed in a previous study. A Lyapunov analysis is presented to demonstrate
stability of the system under proportional–integral (PI) control when saturation of the control effort is
neglected. However, severe control saturations can occur in response to excitation profiles that call for
rapid cooling of the SMA beam elements. Without active cooling, integrator windup results, particularly if
high gains are used. To deal with the windup, a nonlinear PI controller with integrator reset was developed.
A second Lyapunov analysis is used to demonstrate stability of the modified system. Experimental results
are included that demonstrate the improved performance of the system with the nonlinear controller.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Adaptive-passive vibration control involves on-line adaptation of passive elements of the
vibration control system to realize vibration control. The most common adaptive-passive device is
the adaptive tuned vibration absorber (ATVA), a mass–spring–damper assembly mounted to a
primary system exposed to harmonic excitation. Like a classical tuned vibration absorber (TVA),
a lightly damped ATVA will provide significant attenuation of the primary system’s vibration
when the excitation frequency oexc matches the absorber natural frequency oabs: In an ATVA,
oabs is tuned to track an uncertain or drifting oexc; resulting in improved performance when
compared to that achieved with a standard TVA. The improvement is particularly noticeable
when oexc drifts and coincides with a resonant frequency of the primary system. With a passive
TVA, such an event is a distinct possibility as implementation of a TVA introduces a
new resonant peak in the primary system’s frequency response that, in some cases, is quite
close to oabs:
A number of methods are available for realizing ATVA designs and are described in the works

by Sun et al. [1] and Williams et al. [2]. Methods include moving an end mass on a beam as
described by Seto and Tominari [3], the variable-length coil spring of Franchek et al. [4], the
variable leaf-spring design of Walsh and Lamancusa [5], the shunted piezoelectric patch of
Hollkamp and Starchville [6], the piezoceramic inertial actuator (PIA) of Davis and Lesieutre [7],
the magnetostrictive absorber described by Flatau et al. [8], and the shape memory alloy (SMA)
ATVA developed by Williams et al. [9].
Different control paradigms have been used to tune an ATVA in real time. Seto and Tominari

[3] and Walsh and Lamancusa [5] utilized open-loop approaches to match oabs to oexc: The open-
loop approaches have the advantage of simplicity, but may not be robust. Robust performance
requires closed-loop control that can accommodate changes or uncertainties in the ATVA design
and response. Hollkamp and Starchville [6] used a closed-loop gradient-search technique that
sought to minimize the primary system response. Davis and Lesieutre [7] monitored oexc and used
that information to determine the appropriate capacitive shunt to modify oabs of their PIA.
Franchek et al. [4] and Buhr et al. [10] framed the problem in a classical feedback control

framework by examining the response of a system with an undamped TVA applied. For that case,
the optimum condition is indicated by the relative phase between the vibration of the absorber
and the excitation input, frel: At the optimum condition, oabs ¼ oexc; frel ¼ �901; and thus
cosðfrelÞ ¼ 0: For the case of oabsooexc; cosðfrelÞo0 and for oabs4oexc; cosðfrelÞ40; such that
the sign of cosðfrelÞ can be used to determine the appropriate tuning direction. That approach was
successfully demonstrated although no formal stability analysis was performed. It is important to
note that in the presence of damping, the exact optimal condition is no longer indicated by
cosðfrelÞ ¼ 0: However, Williams et al. [2] demonstrated that, for lightly damped ATVA systems,
using cosðfrelÞ ¼ 0 as an indicator of the optimal condition will not result in significant
performance loss.
Thus, cosðfrelÞ is a reasonable indicator of an ATVA’s tuned condition and a logical error

signal for a controller acting to tune the ATVA. A sketch of the behavior of cosðfrelÞ as a function
of the relative frequencies oabs and oexc is shown in Fig. 1. cosðfrelÞ is a nonlinear function of oabs

and oexc: For large mismatches between oabs and oexc; frel approaches either 0 or p; cosðfrelÞ �

�1; and the gain is small. However, the gain increases for oabs approaching oexc and may be quite
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Fig. 1. Variation of frel with relative locations of oabs and oexc:
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large for oabs � oexc: This type of behavior creates certain difficulties for controller design. Large
controller gains will be necessary to achieve performance in the low-gain regions, but those same
gains will lead to excessive overshoot and integrator windup in the high-gain region near oabs �

oexc: Saturation in control effort will further complicate the controller design, as it will contribute
to the problem of integrator windup. Such saturation is anticipated in a system using thermal
actuation, particularly when active cooling is not implemented.
In this paper the development of a feedback controller designed to deal with the specific

nonlinearities inherent in an SMA ATVA is described. The paper builds on the earlier work of
Williams et al. [2], where the development and modeling of an SMA ATVA were described. A
proportional–integral (PI) control law is developed and shown to be stable in the absence of
control signal saturation. Saturation is an issue, however, and when included in the analysis, the
system is no longer guaranteed stable. A phase-plane analysis is used to develop certain
modifications such that the resulting nonlinear controller is guaranteed stable for the SMA ATVA
system. Further, the modifications have the beneficial effect of permitting the use of higher-gain
controllers. Experiments were performed using the nonlinear controllers and results are presented
to demonstrate the improved performance that can be attained.
2. Closed-loop system model

2.1. Control goal

In previous work, Williams et al. [2] described the development and modeling of an SMA
ATVA composed of NiTi (Nitinol) SMA beams embedded in an end-mass. The elastic modulus of
NiTi varies with temperature, such that heating and cooling of the SMA beams is used to adapt
the SMA ATVA stiffness, with corresponding changes in the SMA ATVA natural frequency. The
basic open-loop plant is shown in Fig. 2. System inputs are the ambient temperature, T1; and the
squared-current from a DC power supply, i2. Those inputs map to an SMA beam temperature,
xT, through the temperature dynamics. In turn, xT maps to an equivalent absorber stiffness,
ka(xT) which, in combination with oexc; determines the error signal cosðfrelÞ through the function
f ðka;oexc). The role of the feedback controller is to control current to the SMA beams such that
xT will result in the appropriate tuned condition of the ATVA, as indicated by cosðfrelÞ ¼ 0: It is
acknowledged that online variation of the absorber stiffness, ka; results in a time-varying system.
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Fig. 2. Open-loop SMA ATVA system [2].
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However, as noted in the work by Williams et al. [2], the separation between the temperature
dynamics and the actual excitation frequency, oexc; is sufficiently large as to neglect the time-
varying nature of the system. For example, for the system used in this work, the thermal time
constants are on the order of multiple seconds, while oexc is above 40Hz.
As noted above, the SMA element temperature xT dictates the value of the error signal cosðfrelÞ

for a given oexc: The temperature dynamics are assumed to be first-order with a corresponding
time constant t: The gain between the squared-current input u and the steady-state temperature
above T1 is kT : The temperature dynamics are thus represented by the equation

_xT ¼ �
1

t
ðxT � T1Þ þ

kT

t
	 u.

If the equilibrium temperature, xeq, is defined as the specific xT necessary to achieve cosðfrelÞ ¼ 0;
then the model is simplified by introducing the perturbed temperature ~x ¼ xT � xeq: ~x is thus the
temperature difference between the instantaneous SMA beam temperature and the equilibrium
beam temperature necessary to produce cosðfrelÞ ¼ 0: The dynamics for ~x are described by the
equation

_~x ¼ �
1

t
	 ~x þ

kT

t
	 u �

1

t
ðxeq � T1Þ.

For the case of an absorber mounted on a primary system, the transfer function relating the
primary system acceleration to the absorber acceleration is

s2X aðsÞ

s2X PðsÞ
¼

cas þ kað ~xÞ

mas2 þ cas þ kað ~xÞ
,

where the absorber mass, damping, and stiffness are given by ma; ca; and kað ~xÞ; respectively, Xa(s)
and Xp(s) are the Laplace transforms of the absorber and primary system displacement, and s is
the standard Laplace operator. The notation kað ~xÞ is used for the absorber stiffness to highlight its
dependency on the SMA element temperature. Given the above transfer function, the phase
relationship between the absorber and primary system vibration is governed by the relation

f ðkað ~xÞ;oexcÞ ¼ tanðfrelÞ ¼
�ca 	 ma 	 o3

exc

k2
að ~xÞ � kað ~xÞ 	 ma 	 o2

exc þ c2a 	 o2
exc

.

After some trigonometric manipulation, the following expression for cosðfrelÞ is obtained:

cosðfrelÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 2
ðkað ~x;oexcÞÞ

s
.
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By combining the temperature dynamics and the derivation for cosðfrelÞ; the overall system
description is given by

_~x ¼ �
1

t
	 ~x þ

kT

t
	 u �

1

t
ðxeq � T1Þ,

y ¼ cosðfrelðkað ~xÞÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 2
ðkað ~xÞ;oexcÞ

s
; f ðkað ~xÞ;oexcÞo0;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 2
ðkað ~xÞ;oexcÞ

s
; f ðkað ~xÞ;oexcÞ40:

8>>>>>><
>>>>>>:

ð1Þ

The only relationship not included in Eq. (1) is the mapping between the SMA element
temperature and the resulting absorber stiffness kað ~xÞ: That map can be obtained experimentally
and curve-fits can be used to represent the map. An experimentally determined plot of kaðxT Þ is
shown in Fig. 3, along with different curve-fits described in Williams et al. [2].
The goal of the tuning problem is to achieve the condition ~x ¼ 0: Thus, it would seem that the

problem is one of temperature control. However, ~x is not directly measurable and the output,
y ¼ cosðfrelÞ; is measurable. For a fixed oexc; the relationship between ~x and y is unique. This is
due to the unique mapping between cosðfrelÞ and oabs and the mapping between ~x and ka, as
shown in Figs. 1 and 3, respectively. The two mappings may be combined into a single mapping
that relating ~x to cosðfrelÞ: As shown in Fig. 4, that mapping is a strictly increasing function in the
first and third quadrants. The strictly increasing nature of the relationship between ~x and y will be
instrumental in determining the stability of the system for different controllers.

2.2. Controller structure

Steady state power is required to maintain xeq, even in the case where cosðfrelÞ ¼ 0: As such,
integral action is necessary in the controller. A PI controller is a logical starting point for
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Fig. 3. SMA ATVA stiffness vs. temperature. J experimental, –––– curve fit 1, - - - curve fit 2, – 	 – curve fit 3.
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Fig. 5. Closed-loop SMA ATVA system.
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controller design. With the error signal cosðfrelÞ; the basic form of the PI controller is

u ¼ �KP cosðfrelÞ � KI

Z t

0

cosðfrelÞ dt,

where KP and KI are the proportional and integral controller gains, respectively. In that
expression, the signs on the two controller terms are both negative. This is because the feedback
signal from the system output is cosðfrelÞ and the reference value from the input is 0. If the integral
of cosðfrelÞ is defined as a second state xI, then the control law is rewritten as

u ¼ �KP 	 _xI � KI 	 xI . (2)

Using Eq. (2) to close the feedback loop results in the second-order closed-loop system shown in
Fig. 5 and the state equations

_~x ¼ �
1

t
	 ~x �

kT 	 KP

t
cosðfrelð ~xÞÞ �

kT 	 KI

t
xI �

1

t
ðxeq � T1Þ,

_xI ¼ cosðfrelð ~xÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 2
ðkað ~xÞ;oexcÞ

s
; f ðkað ~xÞ;oexcÞo0;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 2
ðkað ~xÞ;oexcÞ

s
; f ðkað ~xÞ;oexcÞ40:

8>>>>>><
>>>>>>:

ð3Þ

The challenge of selecting appropriate KP and KI values is addressed in the next section.
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3. Linear controller design

As a first step in the design of a controller for the SMA ATVA, the system was linearized about
the desired steady-state value ~x ¼ 0 (equivalent to the condition xT ¼ xeq) for a fixed excitation
frequency of 42.7Hz. In performing the linearization, three nonlinearities were considered:
control effort saturation, stiffness saturation as shown in Fig. 3, and fact that the error signal
cosðfrelÞ was limited to be within the bounds of �1: The control effort saturated at an upper
bound given by the maximum squared-current of the DC power supply, i2max; and at a lower
bound of i2min ¼ 0; as active cooling was not used in this effort. The stiffness saturation and the
bounds on cosðfrelÞ were lumped into a single static nonlinearity cosðfrelð ~xÞÞ; as described
previously and shown in Fig. 4. cosðfrelÞ is approximately �1 for temperatures significantly below
xeq and increases to +1 over a very narrow range of temperatures about xeq. To examine this
behavior, an SMA ATVA was implemented on a primary system as shown in Fig. 6. The physical
dimensions of the SMA ATVA and the primary system are shown in Tables 1 and 2. The primary
system was excited with a 42.7Hz signal. After 30 s, a squared-current of approximately 53 A2 was
passed through the SMA beam elements for 360 s. The current was then removed and the test
continued for an additional 330 s. The resulting plot of SMA beam temperature is shown in Fig. 7
and the corresponding plots of primary mass acceleration and cosðfrelÞ are shown in Fig. 8.
ATVA

0.55 kg end mass

152 mm x 38 mm  x 9.5 mm steel beam

electromagnetic shaker

( )tx

ATVA

0.55 kg end mass

152 mm x 38 mm  x 9.5 mm steel beam

electromagnetic shaker
ATVA

0.55 kg end mass

152 mm x 38 mm  x 9.5 mm steel beam

electromagnetic shaker

Fig. 6. SMA ATVA and primary system mounted on a shaker.

Table 1

SMA ATVA dimensions

rsteel 1.06mm

rSMA 1.22mm

L 60mm

Mend 0.132 kg

mbeam 0.00724 kg

Table 2

Primary system dimensions

bb 38mm

hb 9.5mm

L 152mm

Mend 0.55 kg

mbeam 1 kg
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Fig. 7. SMA beam current and temperature during test: - - -, squared-current; –––, temperature.
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K.A. Williams et al. / Journal of Sound and Vibration 288 (2005) 1131–11551138
cosðfrelÞ was then plotted as a function of xT as shown in Fig. 9. In that figure, two curves are
apparent. The curve on the right is the plot of cosðfrelÞ vs. xT during the cooling phase, while the
left curve is the same plot during the heating phase. As noted by Williams et al. [2], any hysteresis
in the curves is relatively insignificant and is attributed more to the difficulty of obtaining precise
temperature measurements with the SMA elements vibrating in open laboratory air.
To linearize the system about xeq, cosðfrelð ~xÞÞ is modeled as a static gain equal to the slope of

the cosðfrelÞ vs. xT curve as it passes cosðfrelÞ ¼ 0: This substitution is shown in Fig. 10. If the
static gain is defined as kc, then for deviations about the cosðfrelÞ ¼ 0 operating point, the system
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dynamics are approximately modeled by the transfer function

GðsÞ ¼

KP 	 kT 	 kC

t
ðs þ KI=KPÞ

s2 þ
1þ KP 	 kT 	 kC

t

� 	
	 s þ

KP 	 kT 	 kC

t
ðKI=KPÞ

. (4)

The output of GðsÞ is cosðfrelÞ; while the input is the reference value cosðfrelÞ ¼ 0:
In a standard linear control problem, KP and KI could be chosen to provide a certain system

bandwidth and damping. In the case of the SMA ATVA, however, use of the spring stiffness kC is
only valid in a very narrow region about xeq. Outside of that region, kC drops to a small value. A
controller designed according to the value of kC in the vicinity of xeq will provide a potentially
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sluggish response at other values of xT. Conversely, if the controller is designed according to the
value of kC far from xeq, the plant gain will become large near xeq and significant overshoot would
occur. As a starting point, the proportional gain KP was chosen such that the controller would
saturate for a maximum error of cosðfrelÞ ¼ 1:0: That value of KP produces the largest range of
linear operation about xeq, while still providing for the widest range of control signals. A larger KP

would cause saturation at smaller values of cosðfrelÞ and contract the range of linear operation. At
the same time, a smaller KP will never produce the maximum control effort, because cosðfrelÞ is
limited to the range cosðfrelÞ 2 ð�1; 1Þ: To calculate the value of KP such that the controller
reaches the saturation state, the following procedure was used:
(1)
 Determine the equilibrium temperature, xeq, for a given excitation. From Fig. 8, xeq ¼ 26:5 1C
for the 42.7Hz excitation.
(2)
 Determine the squared-current, i2eq; required to maintain xeq at a given ambient temperature
using xeq and the gain of the temperature dynamics, kT. An approximate kT ¼ 0:2 1C=A2 was
determined from open-loop temperature testing. kT was used together with an assumed T1 ¼

22 1C to estimate i2eq ¼ 22 A2:

(3)
 Determine the ‘‘nearest’’ saturation; either at i2max with an error of cosðfrelÞ ¼ þ1:0 or at

i2min ¼ 0 A2 with an error of cosðfrelÞ ¼ �1:0: With a power supply limit of 10 A, saturation at
i2min ¼ 0 A2 was the nearest saturation.
(4)
 If ði2max � i2eqÞoi2eq; then the system will saturate at the maximum control effort first. For this
case, KP is equal to ði2max � i2eqÞ: Otherwise, the system will saturate at zero current first. For
this case set KP ¼ i2eq: As noted previously, saturation at 0A2 was anticipated, so KP ¼ 22A2:
Once KP is chosen, KI was calculated to provide the linearized system with a damping ratio
z ¼ 0:707: Based on the data shown in Fig. 9 and data from other similar tests, kC estimates were
bounded by kCjmin ¼ 1:33 �C�1 to kCjmin ¼ 8 �C�1: Using the values of kT, t; KP, and z; the
corresponding range of KI values are KI jmin ¼ 1:5 A2=s and KI jmin ¼ 13 A2=s: The broad range of
KI reflects the fact that a range of xeq are obtained for the different excitation frequencies. For this
set up, the range of xeq is broad, when compared to the nominal beam temperature above
ambient, such that the temperature dynamics varied across the range of potential SMA
temperatures.
To test the controller, the shaker was driven at 41Hz with an amplitude of 0.2 g. oexc was then

stepped up to 42.5Hz, up to 44Hz, down to 42.5Hz, and finally back to 41Hz. Accelerometers
mounted on the primary mass and on the absorber mass were used to measure the acceleration
data that was used to determine cosðfrelÞ: For the first 30 s of testing, no error signal was passed to
the controller, to allow the system to come to a steady state. After 30 s, the value of cosðfrelÞ was
provided to a PI controller. The controller gains were KP ¼ 22A2 and KI ¼ 1:52A2=s: The lower
value of KI was chosen for the first tests to minimize the potential for integrator windup. The
experimental results are shown in Fig. 11, which contains plots of the primary mass acceleration,
cosðfrelÞ; and the current running through the SMA beam elements during the test. The primary
mass acceleration is also plotted for the case of no ATVA implemented, to demonstrate the
improved vibration performance obtained when implementing the ATVA.
As shown in Fig. 11, the controller drives cosðfrelÞ to zero after each step change in oexc: At the

same time, the acceleration response of the primary system is significantly reduced. For clarity’s
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sake, the response to the 41Hz excitation is shown in Fig. 12 and the response to the step down
from 42.5 to 41Hz is shown in Fig. 13. The reason for the large amplitude of the primary mass
acceleration just after the step down to 41Hz is that the 42.5Hz tuned condition of the absorber
introduces a 41Hz resonance in the frequency response of the primary system. As a consequence,
the sudden step down to 41Hz is actually a step down to a resonant condition that goes away as
the controller appropriately tunes the absorber.
In both Figs. 12 and 13, overshoot is also apparent in the system response. In Fig. 12, the

system attains cosðfrelÞ ¼ 0 in a very short time; at approximately 60 s into the test, which is only
30 s after the start of control. However, windup in the integrator results in continued heating of
the SMA elements such that steady-state operation near cosðfrelÞ ¼ 0 is not attained until much
farther into the test. As a consequence, the primary mass acceleration at first decreases as the
appropriate tuning is achieved and then increases due to the overshoot, as can be seen in the
‘‘hump’’ in the acceleration response shown in Fig. 12. The penalty for the overshoot in the
‘‘tuning down’’ case is not as apparent, although it still occurs, as shown in Fig. 13.
In general, overshoot is not desirable, but in the case of an ATVA, it can be particularly

problematic, as overshoot of the target-tuned condition may result in excitation of the primary
system at resonance. In the case of the SMA ATVA, a large contributor to the overshoot is the
saturation of the control effort at i2min ¼ 0: With the nonlinearity of cosðfrelð ~xÞÞ and the hard
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Fig. 12. System response to 41Hz excitation, starting from zero error at 30 s, KP ¼ 22; KI ¼ 1:52: (a) Primary mass

acceleration, (b) cosine of relative phase, (c) control current.
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saturation due to the controller effort limitations, it is reasonable to consider if the system can be
driven unstable. While the experimental results indicate that it is possible to use cosðfrelÞ as an
error signal, it is important to determine if the current control scheme is stable or if a controller
can be designed that results in a stable closed-loop system. In the next section of this work, the
stability of the SMA ATVA system is investigated.
4. System stability and nonlinear controller design

4.1. Stability in the absence of control saturation

For the purposes of this work, stability of the SMA ATVA system refers to the guarantee that
the SMA ATVA will attain the condition cosðfrelÞ ¼ 0: This is achieved by driving the state ~x to
zero and driving the state xI to the value such that the current passing through the SMA elements
is sufficient to maintain the SMA element temperature at xeq. As a first step for investigating
stability, controller saturation was ignored. With the nonlinear function cosðfrelð ~xÞÞ; a standard
linear analysis is not possible and a Lyapunov stability analysis was performed. The first step was
to choose a candidate Lyapunov function that is positive definite for all possible system states. If
the derivative of that function is negative definite, then the system is stable. In the system
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Fig. 13. System response to step from 42.5 to 41Hz excitation KP ¼ 22; KI ¼ 1:52: (a) Primary mass acceleration, (b)

cosine of relative phase, (c) control current.
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description of Eq. (3), the system state vector is ½xI ; ~x�
T:Using those states, the Lyapunov function

chosen for the analysis is

V ðxI ; ~xÞ ¼
KI 	 kT

2 	 t
xI þ

xeq � T1

KI 	 kT

� 	� 	2

þ

Z ~x

0

cosðfrelðZÞÞ dZ. (5)

The squared term in Eq. (5) is always positive if KI40: The integral term is also always positive,
as the signs of cosðfrelðZÞÞ and dZ are always the same. Thus V ðxI ; ~xÞ is always greater than or
equal to zero. VðxI ; ~xÞ will only be equal to zero if each of the terms in Eq. (5) are identically zero.
The second term is zero only if ~x ¼ 0: The first term is only zero if KI 	 kT 	 xI ¼ ðxeq � T1Þ: The
squared-current passing through the SMA elements is KI 	 xI and kT is the gain between the
squared-current and SMA element temperature above T1: As such, KI 	 kT 	 xI ¼ ðxeq � T1Þ

implies that the SMA element temperature is maintained at the desired equilibrium temperature
xeq. Hence, V ðxI ; ~xÞ is positive definite, provided KI40: The time derivative of Eq. (5) is

_V ðxI ; ~xÞ ¼
KI 	 kT

t
	 xI 	 _xI þ ðxeq � T1Þ _xI þ cosðfrelð ~xÞÞ _~x

¼ �
kT

t
	 KP 	 _x2

I �
1

t
	 ~x 	 _xI . ð6Þ
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In Eq. (6), the first term is zero only if _xI ¼ 0 and is negative for all other _xI : ~x and _xI always have
the same sign, as shown in Fig. 4, such that the second term in Eq. (6) is negative for all non-zero ~x
and _xI : The second term is zero when either ~x or _xI is zero. As such, _V ðxI ; ~xÞ is negative definite
and the system is stable in the absence of control saturations.
Without active cooling, control saturations are likely if oexc drops suddenly. Depending on the

power supply current limits and the size of step increases of oexc; heating saturation may be an
issue as well. As noted previously, the control effort u is a linear function of xI and _xI : u ¼

�KP 	 _xI þ KI 	 xI : Given that control signal, controller saturations are thus lines in the fxI ; _xI g

phase plane. That is, control saturations occur along the lines umax ¼ �KP 	 _xI þ KI 	 xI and
umin ¼ �KP 	 _xI þ KI 	 xI : For this reason, the stability analysis is somewhat simplified if the
system is examined in the fxI ; _xIg phase plane. This is a valid approach, as the variables ~x and _xI

are related by a nonlinear coordinate transformation as shown in Fig. 4. Defining that
transformation according to _xI ¼ Nð ~xÞ; Nð ~xÞ is strictly increasing, is always in the first and third
quadrants, and passes through the origin. The inverse transformation ~x ¼ N�1ð _xI Þ also exists, for
�1p _xIp1; such that the system dynamics can be expressed by the nonlinear second-order
differential equation

€xI ¼
qNð ~xÞ

q ~x
	 _~x ¼

qNð ~xÞ

q ~x
�

1

t
	 N�1ð _xI Þ �

KP 	 kT

t
	 _xI �

KI 	 kT

t
	 xI �

1

t
ðxeq � T1Þ


 �
. (7)

Further, as also shown in Fig. 4, driving ~x to zero implies that _xI also goes to zero. As such, it is
sufficient to consider system stability in the fxI ; _xI g phase plane. While the expression in Eq. (7) is
not directly implemented in the stability analysis, it is used to demonstrate that analysis of the
system using the state vector ½xI ; _xI �

T is equivalent to analysis of the system using the state vector
½xI ; ~x�

T:
By defining the maximum and minimum control efforts as umax ¼ i2max and umin ¼ 0; the fxI ; _xI g

phase plane is separated into saturated and unsaturated regions as shown in Fig. 14. An _xI vs. xI

phase portrait was plotted using data from the initial 41Hz excitation response shown in Fig. 12
and is shown superimposed over the saturation boundaries in Fig. 14. As shown in Fig. 14,
saturation during the heating phase does not occur. In the cooling range, the system saturates in
the umin ¼ 0 region for a period of time. That saturation is also apparent in the time plot of the
current from approximately 80–100 s as shown in Fig. 12.
To further demonstrate the saturation behavior, the controller gains were increased to KP ¼ 44

and KI ¼ 26 and the system was excited with the same series of step changes in oexc: The system
response to the 41Hz excitation and the corresponding phase portrait are shown in Figs. 15 and
16, respectively. In Fig. 16, the system appear stables and it may be reasonable to expect that
given enough time, the trajectory would converge to a steady solution cosðfrelÞ ¼ 0: However,
there is no guarantee that convergence will occur. As such, it is important to continue the analysis
and determine stability for the general case. To that end, the Lyapunov analysis was extended to
include controller saturations.

4.2. Stability in the presence of saturation

If controller saturations are included in the analysis, the system’s response is dictated by three
different sets of dynamics. In the unsaturated region, the dynamics described by Eq. (3) are valid.
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Fig. 15. SMA ATVA system response to 41Hz excitation, KP ¼ 44; KI ¼ 26: (a) Primary mass acceleration, (b) cosine

of relative phase, (c) control current.
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In the saturated regions, the system dynamics are determined by using u ¼ umax ¼ i2max and u ¼

umin ¼ 0: If those control signals are substituted for the linear PI controller originally represented
by Eq. (2), the corresponding Lyapunov function derivatives are

_V ðuminÞ ¼
KI 	 kT

t
	 xI 	 _xI �

1

t
	 ~x 	 _xI (8)

and

_V ðumaxÞ ¼
KI 	 kT

t
	 xI 	 _xI �

1

t
	 ~x 	 _xI þ

kT

t
	 umax 	 _xI . (9)

From Eqs. (8) and (9), there will be regions in the fxI ; _xIg plane where _V ðxI ; _xI Þ40: In Eq. (8), for
example, the second term is always negative, as _xI and ~x always have the same sign. In the first
and third quadrants, however, the first term is always positive. As such, at any fixed location in
the first and third quadrants, _VðxI ; _xI Þ can be made larger than zero by increasing KI sufficiently.
For a fixed KI, therefore, there are locations in the first and third quadrants where _V ðxI ; _xI Þ40:
The locations and general shape of those regions are shown in Fig. 17. Following the above
analysis, the size of the _V ðxI ; _xI Þ40 regions increases with increasing KI :
Because of the existence of the _V ðxI ; _xI Þ40 regions, the Lyapunov analysis is inconclusive with

respect to system stability. To further continue the analysis requires either the determination of a
different candidate Lyapunov function V ðxI ; _xI Þ or a modification of the system dynamics to
avoid the _V ðxI ; _xI Þ40 regions. The latter approach was taken and the controller was modified to
ensure that the system trajectories remained in the _VðxI ; _xI Þo0 regions. To achieve that effect,
reset action was used with the state variable xI : _xI ¼ cosðfrelÞ is a measured physical quantity and
cannot be modified. xI, however, is a numerical quantity internal to the controller and can be reset
arbitrarily. To take advantage of this, the controller was changed to allow for resetting xI

when saturation of the control effort is detected. For example, in a cooling phase, if a negative
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squared-current is requested, xI is reset to a value such that the controller requests umin ¼ 0A2:
This reset action is shown in Fig. 18.
The reset value of xI is determined based on the particular saturation boundary and the

instantaneous value of _xI : The umin ¼ 0A2 saturation boundary is described by the equation

_xI ¼ �
KP

KI

	 xI .

Using that relation, the reset value of xI is

xI ¼ �
KI

KP

	 _xI . (10)

In a similar fashion, along the umax ¼ i2max A
2 saturation boundary, the reset equation is

xI ¼ �
umax þ KP 	 _xI

KI

� 	
. (11)

For implementation of this controller, the calculated control output is examined before modifying
the controller output at each time-step. If the controller is requesting a negative output, xI is reset
according to Eq. (10). If the controller is requesting an output greater than umax; then xI is reset
according to Eq. (11). The logic is simple and easily implemented.
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5. Stability of the nonlinear controller

To examine the stability of the SMA ATVA system with the modified controller, the fxI ; _xI g

plane was split into three distinct regions as shown in Fig. 18: region (A) where no controller
saturation occurs and regions (B) and (C), where the controller saturates at umin and umax;
respectively. The role of the controller is to drive all possible system trajectories to the equilibrium
position ½xI ; _xI �

T ¼ ½�uss=KI ; 0�; where uss is the steady state squared-current required to maintain
xeq. The necessary conditions for stability are first, the unsaturated region (A) is an attractive set
for any trajectories starting outside of (A) and second, once within (A), all trajectories will
approach the equilibrium position.

5.1. System behavior along the saturation boundaries

To show that (A) is an attractive set, trajectories starting within region (B) will be considered
first. For all trajectories in (B), the reset action will immediately reset those trajectories to the
(A)–(B) saturation boundary, such that it is sufficient to consider only trajectories starting along
that boundary. Three characteristics of those trajectories must be described
(1)
 Along the (A)–(B) boundary all trajectories have €xIo0; such that they are directed downward
in the fxI ; _xI g plane.
(2)
 Along the (A)–(B) boundary, the trajectory slopes are near zero for €xI close to 1.0 (at the top
of the boundary). Moving down the boundary, the slopes are negative with increasing
magnitude, such that at some point along the (A)–(B) boundary in the upper half-plane, the
trajectory slopes become tangent to the trajectory boundary. That point is labeled tAB.
(3)
 With the reset action, all trajectories along the (A)–(B) boundary above tAB will ‘‘slide’’ down
the boundary to tAB, at which point they will enter the unsaturated region (A). All trajectories
along the (A)–(B) boundary below tAB will enter the unsaturated region (A) immediately.
To prove the first point, with umin ¼ 0; the temperature dynamics of trajectories along the (A)–(B)
boundary are be given by

_~x ¼ �
1

t
	 ~x �

1

t
ðxeq � T1Þ,

such that _~xp0 if ð�xT þ T1Þo0: As active cooling is not used in this work, it is impossible for xT

to be less than T1; and _~xp0 occurs. _~x ¼ 0 only occurs if the SMA beam element temperature
equals the ambient temperature. In practice, such a situation will not occur, as the SMA ATVA
will have been designed such that the minimum operating temperature is greater than T1: As
such, _~xo0 along the (A)–(B) boundary. As shown in Fig. 4, sgnð _~xÞ ¼ sgnð €xI Þ; with the result that
€xIo0 for all trajectories along the (A)–(B) boundary and the first point is proven.
The slope of the trajectories is given by the ratio m ¼ q _xI=qxI : Using the chain-rule, m ¼ €xI= _xI :

Thus, as _xI ¼ cosðfrelÞ ! 1:0; m ! €xI : Next, the chain rule is used expand €xI ; such that €xI ¼

ðq _xI=q ~xÞ _~x: As _xI ¼ cosðfrelÞ ! 1:0; q _xI=q ~x ! 0; as shown in Fig. 4, such that m ! 0 as _xI ! 1:0
toward the top of the (A)–(B) saturation boundary. As the trajectories ‘‘slide’’ down the (A)–(B)
boundary, the trajectory slopes become progressively more negative until, at the crossing of the
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xI axis, m ¼ �1: At some point during the progression from near-zero slopes down to negative
infinite slopes, the trajectory slopes will be �KI=KP; the slope of the (A)–(B) boundary. That
location is the previously described tAB and thus, the second point is proven.
Finally, the reset action will force any trajectory starting in region (B) to be a point along the

(A)–(B) boundary. For points reset to the boundary above tAB, the trajectories will ‘‘attempt’’ to
leave the boundary for the reasons described above. However, the reset action and the negative
slopes will combine to force those trajectories to slide down to tAB. At that point, the trajectories
will enter region (A). Any points starting in (B) and reset to the (A)–(B) boundary below tAB will
enter region (A), as the slopes are more negative than the slope of the boundary. Thus the third
point is proven.
A similar analysis may be performed to demonstrate that along the (A)–(C) boundary, there

will be a point tAC below which all trajectories intersecting the boundary will attempt to leave it.
Those trajectories will slide up until they pass through tAC. At that point, the trajectory slopes will
then enter region (A). Together, the analyses indicate that trajectories starting outside of (A) will
be reset to a saturation boundary on (A) and ultimately enter (A), demonstrating that the
unsaturated region (A) is an attractive set for all trajectories starting outside of (A) (Fig. 19).
5.2. System behavior in the unsaturated region

Having established that the unsaturated region (A) is an attractive set for system trajectories, it
is now necessary to show that all trajectories within (A) will converge to the equilibrium position.
Once a system trajectory has entered (A), it will behave like one of the three trajectory types
shown in Fig. 20. The trajectory will either
(1)
 asymptotically converge to the equilibrium position without further saturations;

(2)
 wrap around the equilibrium position and return to ‘‘impact’’ the saturation boundary that it

originally came from; or

(3)
 the trajectory will cross (A), impact the opposite saturation boundary, return through (A), and

impact the original saturation boundary.
(A)

(C)

ABt

2
maxmax iu =

ACt

(B) 0min =u

Ix

Ix

(A)

(C)

ABt

2
maxmax iu =

ACt

(B) 0min =u

Ix

Ix

Fig. 19. Regions in the phase-plane and trajectory behavior along the saturation boundaries.
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The Lyapunov function, V ðxI ; _xI Þ; described by Eq. (6) is valid within and on the boundaries of
the unsaturated region (A) in the fxI ; _xIg plane and can be used to show that system trajectories in
groups (2) or (3) will eventually become trajectories in group (1). It is first important to note that
along the (A)–(B) and (A)–(C) saturation boundaries, V ðxI ; _xI Þ is at a minimum at tAB and tAC,
respectively. This is demonstrated in Fig. 21. In the absence of saturation, a trajectory starting at a
point along the (A)–(B) axis somewhere above tAB will spiral out into region (B). The point where
that trajectory leaves the (A)–(B) boundary is labeled eB. When that trajectory attains the same xI

coordinate as tAB, it will have a higher value of _xI as shown in Fig. 21. That point is labeled hB.
With identical xI coordinates, V ðhBÞ4ðtABÞ due to the second term in Eq. (6). Similarly, it can be
shown that for trajectories along the (A)–(B) boundary below tAB, V ðxI ; _xI Þ will be larger than
V ðtABÞ: As such, tAB is the location of the minimal V ðxI ; _xI Þ along the (A)–(B) saturation
boundary. A similar analysis is used to show that V ðxI ; _xI Þ is at a minimum at tAC for trajectories
along the (A)–(C) boundary.
Using these properties, if a trajectory ‘‘slides’’ down the (A)–(B) saturation boundary until tAB,

it can never return to the (A)–(B) saturation boundary. This is because V ðxI ; _xI Þ will decrease in
the unsaturated region, where _V ðxI ; _xI Þo0: If the trajectory does not impact the (A)–(C)
boundary, then V ðxI ; _xI Þ will continue to decrease and the trajectory will spiral in to the
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equilibrium position without further saturation. If the trajectory does, in fact impact the (A)–(C)
boundary, then the implication is that V ðtACÞoV ðtABÞ: After sliding along (A)–(C) up until tAC,
the trajectory will then return to the unsaturated region, but can never return to the (A)–(B)
boundary, as V ðxI ; _xI Þ will have been decreasing both during the transit through region (A), as
well as during the slide up to tAC. From this analysis, it is proven that all trajectories eventually
become type (1) trajectories and will converge to the solution cosðfrelÞ ¼ 0:
To verify the analysis, the new nonlinear controller was implemented with the experimental

setup described previously in Section 3. For this set of tests, the proportional gain was increased
to KP ¼ 88; while the integral gain remained at KI ¼ 26: The purpose of doubling KP was to test
the anti-windup algorithm in a situation where overshoot and integrator windup would be severe.
As for the earlier tests, the initial excitation was at 41Hz, with subsequent steps up to 42.5 and
44Hz, followed by steps down to 42.5 and 41Hz. The time responses of the system to the initial
41Hz excitation are shown in Fig. 22 for the controller with and without the anti-windup
algorithm incorporated. The corresponding phase portraits are shown in Fig. 23.
The effect of the anti-windup algorithm is shown in the plots of cosðfrelÞ in Fig. 22. For both

cases (with and without the anti-windup algorithm), there is an initial overshoot after the
controller is turned on 30 s into the test. When the anti-windup algorithm was not included,
further undershoot and overshoot events occur. By contrast, for the system with the anti-windup
algorithm implemented, after the first overshoot, the system converges to the final answer without
further oscillation. The reason for this behavior is shown in the plot of the current. After the
initial overshoot, cooling is required to soften the SMA spring elements. Both systems saturate at
0A2. The standard linear controller experiences integrator windup, as shown by the longer period
of zero power. The windup is reduced only after the controller integrates sufficient negative error.
The system with the anti-windup algorithm included does not experience windup and thus
converges to the steady state point relatively quickly. The anti-windup action is shown in the
phase portrait of Fig. 23. It is apparent in that figure that the system experiences a type (3)
trajectory as described above, where the system first saturates at the upper limit of the control
effort, then passes through to saturate at the zero control effort saturation boundary.
While the plots of cosðfrelÞ; the current, and the phase portraits illustrate the behavior of the

controller, the most important element to be considered is the improved performance of the
system when the anti-windup algorithm is used. In Fig. 22, the primary mass vibration decreases
as both controllers drive the system to cosðfrelÞ ¼ 0: After that first reduction however, the
primary system vibration starts to increase due to the overshoot in cosðfrelÞ: For the system with
the standard linear controller, the amplitude of the vibration actually more than doubles before
the integrator windup is reduced and the controller changes the tuning direction. For the case of
the system with the anti-windup algorithm included, the performance is substantially improved.
The initial overshoot is not as large as for the standard linear system and the control action brings
the system to steady state much more quickly.
The improved performance of the system with the anti-windup algorithm is also shown in

Figs. 24 and 25 where the system responses and phase portraits are shown for the step down in
frequency from 42.5 to 41Hz at 700 s into the test. For both systems, the initial vibration amplitude
is very large. When the SMA ATVA is tuned to attenuate vibration at 42.5Hz, a secondary
resonance for the primary system is located at approximately 41Hz. The sudden step down in
frequency causes the primary system to be excited at that secondary resonance for a brief period of
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Fig. 23. SMA ATVA system phase portrait for system response to 41Hz excitation, KP ¼ 44; KI ¼ 26: , without; ’,

with anti-windup.
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Fig. 22. SMA ATVA system response to 41Hz excitation, KP ¼ 88; KI ¼ 26; , without anti-windup; ’, with anti-

windup. (a) Primary mass acceleration, (b) cosine of relative phase, (c) control current.
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time while the two controllers attempt to tune the SMA ATVA for the new excitation. In both cases,
the controllers saturate at a squared current of 0A2. The trajectory for the system with the anti-
windup algorithm implemented simply slides down the umin ¼ 0 saturation boundary and converges
to the steady-state solution without further saturation, as shown in Fig. 25. For the standard linear
controller however, the integrator winds up and additional time passes before the system converges
to steady state. The effect of the windup on the system performance is shown in the plot of the
primary mass vibration shown in Fig. 24 where, after the initial reduction in vibration, the primary
system vibration increases again as the system undershoots the final value of cosðfrelÞ:
In addition to demonstrating the performance improvements that are possible through the use

of the anti-windup algorithm in the SMA ATVA controller, the more important result is that the
system analysis has been validated. As expected, based on the Lyapunov analysis, the reset action
guarantees operation within the unsaturated region of the phase plane and corresponding stability
of the system.
One issue that has not been addressed is the overall system bandwidth. Control of the SMA

ATVA is realized through variation of the SMA element temperature and is thus limited by the
bandwidth of the temperature dynamics. During heating of the system, this may not be a
significant issue. This is because implementation of the nonlinear controller permits the use of
high gains, such that very large currents may be used to raise the SMA element temperature very
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Fig. 24. SMA ATVA system response to step from 42.5Hz down to 41Hz excitation, KP ¼ 88; KI ¼ 26: , without

anti-windup; ’, with anti-windup. (a) Primary mass acceleration, (b) cosine of relative phase, (c) control current.
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Fig. 25. SMA ATVA system phase portrait for system response to step from 42.5Hz down to 41Hz excitation,

KP ¼ 44; KI ¼ 26: , without; ’, with anti-windup.
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quickly. During cooling, however, the rate of transformation is entirely dependent on the rate of
heat removal from the SMA elements due to free convection. As such, the bandwidth of the
system may be anticipated to be much slower for cooling, on the order of multiple seconds. Active
cooling may be one method for addressing that issue and is the subject of future work in this area.
6. Conclusions

The development and experimental implementation of a nonlinear controller for an SMA
ATVA was described in this work. The ATVA tuning problem was framed as a classical feedback
control problem and a linear controller was developed. A Lyapunov analysis was presented to
show that the resulting system was stable if controller saturation could be neglected. Due to the
thermal actuation of the SMA tuning elements, controller saturation is expected, particularly
especially when active cooling is not available. To deal with saturation, a nonlinear controller
incorporating an anti-windup algorithm was developed. As shown in the experimental results, the
modified controller works well and can substantially improve the performance of the system by
avoiding integrator windup. In fact, while the controller was developed and successfully
implemented with the SMA ATVA system, the controller has the potential to address the issue of
integrator windup in similar nonlinear control problems. Future work will be directed to that end.
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